Available online at www.sciencedirect.com
ll'l!llll’lolll. NHIIIAI. Of

science ()oinscte OLIDS a
@ STRUCTIIHES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 42 (2005) 4058-4076

Kinematic limit analysis of frictional materials
using nonlinear programming

H.X. Li, HS. Yu *

School of Civil Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

Received 25 November 2004
Available online 21 January 2005

Abstract

In this paper, a nonlinear numerical technique is developed to calculate the plastic limit loads and failure modes of
frictional materials by means of mathematical programming, limit analysis and the conventional displacement-based
finite element method. The analysis is based on a general yield function which can take the form of the Mohr—Coulomb
or Drucker—Prager criterion. By using an associated flow rule, a general nonlinear yield criterion can be directly intro-
duced into the kinematic theorem of limit analysis without linearization. The plastic dissipation power can then be
expressed in terms of kinematically admissible velocity fields and a nonlinear optimization formulation is obtained.
The nonlinear formulation only has one constraint and requires considerably less computational effort than a linear
programming formulation. The calculation is based entirely on kinematically admissible velocities without calculation
of the stress field. The finite element formulation of kinematic limit analysis is developed and solved as a nonlinear
mathematical programming problem subject to a single equality constraint. The objective function corresponds to
the plastic dissipation power which is then minimized to give an upper bound to the true limit load. An effective, direct
iterative algorithm for kinematic limit analysis is proposed in this paper to solve the resulting nonlinear mathematical
programming problem. The effectiveness and efficiency of the proposed method have been illustrated through a number
of numerical examples.
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1. Introduction

To obtain the stability condition and the maximum load of a structure under static loading, a step-by-step
method based on traditional elastic-plastic analysis is commonly used. However, this incremental approach
is often too cumbersome to use in practice because it requires a complete specification of the stress—strain
relation and the nonlinear material properties of a structure. Therefore, other direct methods of stability
analysis, such as the slip line method, limit equilibrium method and limit analysis, have been developed
and applied to determine the plastic limit state of a continuous media directly (Chen, 1975). The slip line
analysis, commonly used in metal forming processes under the plane strain condition, helps to find the stres-
ses at the plastic state by satisfying a yield criterion and local equilibrium equations. Therefore, the slip line
method is usually used for the stability analysis under the plane strain condition. In order to use the limit
equilibrium method, a failure surface is usually assumed to be of a simple type (e.g., a plane, a circle or a
logspirale). This would reduce the difficulty in seeking the position of critical surfaces for sliding or collapse.

Limit analysis is a rigorous and powerful solution method to the stability problem of structures. It can be
used to calculate plastic limit loads of a structure in a direct way and provides a theoretical foundation for
the engineering design and integrity assessment of structures. The limit analysis is based on two dual the-
orems, the static theorem (or the lower bound theorem) and the kinematic theorem (or the upper bound
theorem). Due to the complexity of engineering problems, it is difficult to obtain an analytical solution
and numerical techniques are usually required for limit analysis. Over the last three decades, many studies
have been devoted to developing numerical methods of limit analysis. The finite element method has been
widely used in limit analysis with the aid of mathematical programming techniques. In particular, a linear
technique (e.g., Maier, 1969; Lysmer, 1970; Turgeman and Pastor, 1982; Sloan, 1988; Yu and Sloan, 1994;
Yu et al., 1994; Sloan and Kleeman, 1995; Yu and Sloan, 1997; Francescato and Pastor, 1997) based on the
programming theory was first used to conduct numerical limit analysis, where convex yield surfaces were
linearized to obtain a linear programming problem. Although it is not very difficult to solve this type of
linear problems, the linearization of a yield surface introduces a large number of constraints and it increases
the computational cost. Based on the elastic compensation method, Ponter and Carter (1997, 2000, 2002)
recently developed a linear numerical technique (termed as the Linear Matching Method) to perform kine-
matic limit analysis. The linear solutions are defined with a spatially varying shear modulus which provides
a sequence of upper bounds to the limit load.

Following the work of Zouain et al. (1993), Lyamin and Sloan (2002a,b) presented a nonlinear numer-
ical method to perform kinematic and static limit analyses by means of linear finite elements and nonlinear
programming. The collapse load can be calculated by solving a nonlinear programming problem subject to
a number of equality and inequality constraints. The objective function corresponding to the dissipated
power is expressed in terms of both stresses and velocities. Velocity and stress discontinuities are used in
these formulations. Therefore, additional constraints will have to be enforced on the nodal velocities or
the nodal stresses. A potential difficulty in applying these formulations is that special stress or displacement
finite elements need to be used.

An alternative nonlinear technique (Zhang et al., 1991; Liu et al., 1995; Zhang and Lu, 1995; Chen et al.,
1998; Li et al., 2001, 2003; Capsoni et al., 2001), which is based on the nonlinear programming theory, has
been used with much success to perform limit analysis of non-frictional materials. By using an associated
flow rule, yield criteria can be directly introduced into the bound theorems of limit analysis without line-
arization. A nonlinear programming problem, subject to a small number of constraints, can be obtained
for calculating the plastic collapse. In conjunction with the conventional finite element method, limit anal-
ysis can then be easily performed for a structure. This method has the advantages of good accuracy and
modest computational effort. Up to now, however, this approach has only been applied for von Mises yield
criterion (Zhang et al., 1991; Liu et al., 1995; Zhang and Lu, 1995; Chen et al., 1998; Li et al., 2003) and
Hill’s yield criterion (Li et al., 2001; Capsoni et al., 2001).
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The objective of this paper is to extend the latter nonlinear technique so that it can be used to calculate
plastic collapse loads of frictional materials obeying either the Mohr—Coulomb or Drucker-Prager yield
criterion. The failure modes of a structure can also be obtained by the proposed upper bound method.
The kinematic approach of limit analysis consists of minimising the plastic dissipation power throughout
a rigid perfectly plastic body. By using a general yield criterion and the associated flow rule, the plastic dis-
sipation power can be expressed in terms of a kinematically admissible velocity field. Based on the nonlinear
programming theory, the finite element modelling of kinematic limit analysis for the frictional materials is
formulated as a nonlinear mathematical programming problem subject to a single equality constraint. The
nondifferentiability of the objective function may lead to numerical difficulties in solving the nonlinear pro-
gramming problem. A penalization factor is therefore proposed to overcome the numerical difficulty caused
by the non-differentiability of the objective function. Then a direct iterative algorithm is developed for solv-
ing the nonlinear mathematical programming problem.

A main task in performing a kinematic limit analysis for frictional materials is to implement a nonlinear
yield criterion into the kinematic theorem of limit analysis, because this criterion is expressed by a polyno-
mial with both first and second degree terms. This potential difficulty has been successfully overcome in this
paper. The objective function corresponding to the dissipation power is expressed in terms of a kinematically
admissible velocity field. The stress field within the body does not need to be calculated and the limit state of
a structure can be obtained. This will significantly reduce the required computational effort. The yield surface
is not linearized and this can greatly decrease the number of constraints and the computational effort. The
nonlinear mathematical programming problem is only subject to a small number of equality constraints
which can be easily solved by the algorithm in this paper. Numerical experiments and results illustrate
the high efficiency, low computational effort and good numerical stability of the proposed algorithm.

2. Limit analysis based on a general yield criterion

In limit analysis, it is assumed that the deformation is small at incipient collapse and the material can be
modelled with sufficient accuracy using rigid, perfect plasticity and an associated flow rule. For soil mate-
rials, most yield criteria are expressed by a polynomial with both first and second degree terms to describe
the effect of hydrostatic pressure on the yield of materials (e.g. the Mohr—Coulomb and Drucker—Prager
criteria). It is quite difficult to directly introduce these criteria into the plastic limit analysis. A numerical
technique based on the nonlinear mathematical programming will be developed to perform kinematic limit
analysis for these yield criteria. Note that a tensile stress is assumed to be positive in this paper. Moreover,
in order to use the finite element method, we adopt column vectors to represent strains and stresses. For
example, in a 2-dimensional model, & = [¢;1, &22, 2812]T, and 6 = [0, 022, olz]T, and in a 3-dimensional mod-
el, e = [e11, 620, 33, 2612, 2623, 2¢31]", and 6 = [0, 022,033, 012,023,031 .

2.1. A general yield criterion

Many widely used yield criteria for frictional materials can be expressed in a general form as follows:

F(6)=6¢"P6+6'Q—1=0 (1)

where F(e) defines a yield function in terms of strength parameters, P and Q are coefficient vectors and re-
lated to the strength properties of the material.

The expression (1) can be regarded as a general yield criterion for frictional materials. For example, the
Mohr-Coulomb criterion in plane strain can be expressed as

F(oy) = (0 — 0,,)" + (20,)" = (2cc08 ¢ — (00 + 0,y) sin )” = 0 (2)
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where ¢ and ¢ are the cohesion and the internal friction angle of the material respectively. It can be shown
that the Mohr-Coulomb criterion can be expressed in the form of Eq. (1) with the following relations:

i 1 —1 —sin’e 0 ]
4c? 4c%cosp
.2
p—|Zlosme 1 0 (3)
4c2cos?p 4c?
1
0 0
L c2cos?¢ |
sin @
ccos @
Q= | sing (4)
ccos

0
The Drucker—Prager criterion is also frequently used for frictional materials and can be expressed as
F(o) = @yli +VJ2—co =0 (5)

where [; is the first invariant of stress tensor, J, is the second invariant of the deviatoric stress tensor, ¢q
and ¢ are strength parameters of the material. In a general stress state, Eq. (1) can also be used to define the
Drucker—Prager criterion under the following conditions:

3c; 6c; 6¢;
2 1.2 602
71—1—62% 1 32% 71+2(p0 0 0 0
6¢; 3¢ 6c;
1 + 6¢? 1+6¢02 1-3¢2
P=| - 0 0 0 0 0 6
6¢3 6¢3 3¢} (6)
0 0 0 CLZ 0 0
0
0 0 0 0 5 0
0
0 0 0 0 0 %
L 0
(20, 2, 2 !
0= P 2% 2% 5 o o (7)
L o €o Co

2.2. Kinematic theorem of limit analysis

An upper bound to the plastic limit load of a structure can be obtained by using the kinematic theorem
of limit analysis (Drucker, 1953). The kinematic theorem states: among all kinematically admissible veloc-
ities, the real one yields the lowest rate of plastic dissipation power. Because the kinematic theorem is based
on the concept of an admissible plastic strain rate, it can be formulated as

/1/ t,-ul.*dlﬂg/D(s;‘/.)dvf/ﬁufdv (8)
I, v v
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where / is the limit load multiplier, ¢, is the basic load of surface tractions, f; is the body force, u; is the
displacement velocity vector, ¢; is the strain rate tensor, D(e;) denotes the function for the rate of the plas-
tic dissipation power in terms of the admissible strain rate ¢, the superscript “*” stands for parameters
corresponding to kinematically admissible fields, I', denotes the traction boundary and ¥ denotes the space
domain of the structure.
The rate of plastic dissipation power is defined by
D(e;) = 0y¢;; 9)

According to mathematical programming theory, the kinematic theorem (8) can be revised as the follow-
ing formulation if the internal body force is omitted:
/4 =min [, 6;6;dv
s.t. fro tudl =1
& =% +u;) inV

u; =0 onl,

(10)

where “‘s.t.” is the abbreviation of “subject to”” and I',, denotes the displacement boundary. Thus, the kine-
matic limit analysis of a structure is finally reduced to the calculation of the limit load multiplier A with 1¢;
denoting the limit load of the structure.

2.3. Dissipation power for a general yield criterion

Considering that the kinematic limit analysis is based on displacement modes, the stress terms need to be
replaced by the strain terms, i.e., the dissipation power per unit volume in Eq. (10) should be expressed in
terms of strain fields which can be obtained by using the yield criterion of a material and an plastic flow
rule. The plastic flow rule determines the direction of the plastic strain rate vector by the following normal-
ity relation:

. . 0¢(ay;
i = 200 ,/)

(11)

where ¢(g;;) denotes a plastic potential function that resembles the yield function and j is a non-negative
plastic proportionality factor. In the theory of limit analysis, the flow rule is assumed to be associative, i.e.
¢(0;) = F(o;). Hence the plastic strain rate can be expressed as

e =2uPe + nQ (12)

Therefore, the stress vector at the yield surface can be expressed in terms of the strain rate vector using
the following formulation

1 1
=—P'g—_P 13
o=5Pe—5P 0 (13)
When the matrix P is non-singular, P~' can be uniquely determined. However, if the matrix P is singular,
we can use (P + 79)~' as an approximation for P~!, where y is a small real number (y — 0).
By introducing Eq. (13) into the yield criterion (1), the following calculation can be obtained

TP6+6"Q = iP”s—lP”Q TP iP*‘s—lP”Q + iP”s—lP”Q TQ
ereTe = 2 2 2 2 2
1

1
=P lg——

T p—1
e ;0P (14)
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In the light of Eqgs. (1) and (14), the following equation can be found for a point at the yield surface:

| SRR
Considering u is a non-negative plastic proportionality factor, it can be calculated as the following
formulation

[ &P g
n= 4+QTP71Q (16)

Meanwhile, based on Eq. (13), the plastic dissipation power for the general criterion (1) can be re-ex-
pressed as follows:

1 1 B | 1
) — o — T -1, Lo _ Tp-l, 1 Tp-1
D(ey) =06, =0"¢ (_Z,up & 2P Q) F: —2H8P F: 28P (0] (17)
According to Eq. (16), the above formulation can be written as
I L 7pi,, 1 Tp-I T p-1 |
D(sy) =58P o= 3P Q=3\/(P ) (4+Q'PQ) - 35 TPIQ (18)

Then, the plastic dissipation power is expressed in terms of plastic strain rates. Once the kinematically
admissible velocity is obtained, the plastic dissipation power can also be calculated. Therefore, it is not neces-
sary to calculate the stress vector in order to determine the plastic dissipation power. Moreover, the yield sur-
face is not discretized and this reduces the number of constraints significantly for the kinematic limit analysis.

2.4. The nonlinear programming problem

Based on the above analyses, the kinematic limit analysis for frictional materials can be formulated as
the following mathematical programming problem:

/. =min [, [; \/ (TP 'e)- (4+Q'P'Q) - LeTP Q| dv

st. [ T'udlN =1 (19)
e=1(Vu+uV) inV
u=0 onlrl,

where T is the basic load column vector of surface tractions and u is the displacement column vector.

3. Finite element modelling

The displacement-based finite element method is used in this paper to perform the numerical calculation
for the kinematic limit analysis. The structure is first discretized into finite elements ¥ = | J\_, V.. Then, the
displacement velocity and strain rate fields can be interpolated in terms of an unknown nodal displacement
velocity vector:

u,(x) = N,(x)d, (20)
g.(x) = B.(x)d, (21)

where, with reference to the e-th finite element, 4, is the nodal displacement velocity column vector, &, is the
strain rate column vector, N,(x) is the shape function and B,(x) is the strain function.
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B.=[B\,B,,...,B,] (22)
where o )
o 0 0
ON;
0 3 0
0 0 aév f
z
Bl = aN, aN, 0 (l = 1727 . 7”) (23)
Jdy x
) W
0z Oy
ON; 0 %
L Oz Ox A

where 7 is the nodal number of the finite element.
By using the Gaussian integration technique, the objective function in Eq. (19) can be expressed in terms
of the nodal displacement velocity as

[ 3o @wiopig - e ga

> [ [N«Béfp‘(&&)) 4+ QPO - 5B P Q)]

1G

3

1 =1

0.)
> ([5G (K)8) 4+ QTP 0) - S 6T(6) (24)

i=1

MZ lMZ

‘ lJ'[ Vi 5T<BZ>iP-1<Be>iae>-<4+QTP-IQ>—i(éj(BZLP*Q)}

e

Mz

I
—_

where (p.); is the Gaussian integral weight at the i-th Gaussian integral point in element e, |J; is the deter-
minant of the Jacobian matrix at the i-th Gaussian integral point and /G is the number of Gaussian integral
points in the finite element e.

K.=B'P'B, (25)

G.=BP'Q (26)
By introducing the transformation matrix of each element C,, the nodal displacement velocity vector J,
for each element can be expressed by the global nodal displacement velocity vector é for the structure.

0.,=C,-90 (27)
Then, Eq. (24) can be recast as

/VB\/(STP-IS) (4+0"P Q) - TP Q]du
=303 o[yl e)ﬁe)-(4+QTPIQ)—%((SE(Ge)i)]

e=1 i=

—Zp,m[ VKD -4+ 0P Q) 1676 (28)

icl
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where I denotes the set of all Gaussian integral points of the FE discretized structure, and
K, = C'(K,),C, (29)
G, = C!(G,), (30)

After the discretization, the normalization condition in Eq. (19) can be expressed in terms of the nodal
velocity fields as

FT'o=1 (31)

where F is the basic column vector of equivalent nodal loads.
Finally, the finite element modelling of kinematic limit analysis for the frictional materials can be ex-
pressed as the following minimum optimization problem

h=min ) p] B VOTKS) -4+ QTP Q) -1 (576G) (322)

iel

st. FTo=1 (32b)

After the displacement boundary condition is imposed by means of the conventional finite element tech-
nique, a minimum optimized upper bound 4 to the plastic limit load multiplier of the structure can be ob-
tained by solving the above mathematical programming problem. The plastic limit load of the structure is
given by AF.

4. The iterative solution algorithm

The kinematic (upper bound) limit analysis defined by Eq. (32) is a minimum optimization problem with
a single equality constraint. The objective function is nonlinear, continuous but may be nondifferentiable.
For a continuous and differentiable quadratic mathematical programming problem under the Kuhn-
Tucker’s conditions, several effective methods can be used to solve it (Himmelblau, 1972).

For the mathematical programming problem Eq. (32), there is a calculation of square root which could
make the objective function unsmooth and nondifferentiable. This causes some difficulties in solving the
programming problem. For a linear nondifferentiable programming problem, if the objective function is
finite and continuous in a feasible set, it is not necessary to be differentiable everywhere and an optimal
solution can be obtained (Shapiro, 1979). The nonlinear objective function was shown to be nondifferen-
tiable in rigid areas for limit analysis using the von Mises criterion (Zhang et al., 1991; Zhang and Lu,
1995; Liu et al., 1995; Chen et al., 1998; Li et al., 2001, 2003). The difficulty was then overcome by using
an iterative algorithm (Zhang et al., 1991), where a technique based on distinguishing rigid/plastic areas
was put forward. This technique is similar to the procedure used by Huh and Yang (1991) and will be used
in this study to solve the nonlinear mathematical programming problem Eq. (32).

By using the Lagrangean method (Himmelblau, 1972), the equality constraint can be removed from Eq.
(32). Then, an unconstrained minimum optimization problem can be obtained as follows:

Lo.0) = oI5\ (07K ) (4 0P Q) - 357G)| +a(1 — ) (33)

i€l

where ¢ is the Lagrangean multiplier.
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In order to perform an iteration technique for solving the nonlinear programming problem, Eq. (33) can
be re-written as

[1 (0'K:d)-(4+0'P'Q)

1 T T

L(d,q) = ZP:‘UL‘
icl
where @!/P) = \/ (0'K:8)- (4+ Q"P'Q) and the superscript ‘/CP> denotes @ is an iteration control
parameter.
To overcome the difficulties which may arise from an unsmooth objective function (32a), all of nondif-

ferentiable areas need to be identified where the first part of the plastic dissipation power becomes zero (i.e.,
\/ (6"K;0) - (4+ Q"P'Q) = 0). In order to find all nondifferentiable regions, an iteration technique is

needed. The iteration starts from the hypothesis that the strain rate is non-zero everywhere and the non-
differentiable region does not exist at first iteration step. However, from the second iteration step, the strain
rate will be updated and the nondifferentiable region can be identified by checking whether

\/ (0"K:3)- (4+ Q"P'Q) is equal to zero. All nondifferentiable areas will be found by means of this
step-by-step technique.
Once a nondifferentiable region is found at an iteration step, the condition

(\/ (0"K;0) - (4+ Q"P'Q) = 0) will be introduced as a constraint into the mathematical programming

problem by means of the penalty function method. Therefore, the objective function will be modified at
each iteration step until the limit load multiplier is determined.

Based on the above analyses, an iterative solution algorithm for calculating the limit load multiplier is
proposed as follows:

Step 0: initializing the nonlinear objective function

As shown in Huh and Yang (1991) and Liu et al. (1995), the selection of the initial nodal velocity field
does not affect the convergence of iteration. It may be proved that from any initial trial solution, the sub-
sequent iterations are locked in a certain convex hull that contains the exact solution of the problem (Huh
and Yang, 1991). For simplicity, we follow Zhang and Lu (1995) and start iteration by defining an iteration
seed (0/“P)y = 11in Eq. (34). Then, the initial nodal displacement vector d, can be estimated by solving the
following mathematical programming problem:

1 i 1
L(d.9) =Y pll; {5 (0'K:0) - (4+Q'P Q) —5(3"Gy)| +4(1 - F'9) (35)
iel
Using the minimum optimization theory, the following system of linear equations can be obtained by
applying & = 0 and g—s =0:

> ol [(K:d) - (4+Q"PT'Q)) —1G)] = gF
iel (36)
F'o=1

By solving the above system of linear equations (36), we can obtain the initial nodal displacement veloc-
ity vector &y. Then, the initial load multiplier can be calculated by using

o=y pll, E JOIKS) - (44 0'P Q) - %6301- (37)

iel
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Step k+1(k=0,12, ... ): distinguishing the nondifferentiable areas to revise the objective function

Based on the computational results at step k, the value of \/ (0"K:0)- (4+ Q"P'Q)(i € I) needs to be
calculated at every Gaussian integral point of the finite element discretized structure in order to check
whether it is in a nondifferentiable area. Then the Gaussian integral point set 7 will be subdivided into
two subsets: the subset (/z),+; where the objective function is not differentiable and the subset (/p);+; where
the objective function is differentiable.

I=(Ir)jy Y Ip)ip (38a)
(Ur)i = {i €l \/(5}K,-5,{) 4+ 0"P Q)= ()} (38b)
(Ip)ps) = {i el \/ (0,K:0,) - (4+0Q'P'Q) +# 0} (38¢c)

However, considering that there is a limitation of storage for a computer and that any attempt to eval-
uate the gradient of a square root near a zero argument would cause computational overflow, a small real
number {({ — 0) is needed in a computer program to distinguish the differentiable and nondifferentiable

regions. In other words, a region with \/ (6"K;0) - (4 + Q"P'Q) < { can be regarded as nondifferentiable.
From a theoretical point of view, the smaller ( is, the more precise the numerical calculation would be. In
practice, however, the value { adopted in a computer program may vary from 105 to 10~'2. The numerical
calculations suggest that when ( is less than 10~%, it has very little effect on the results. A similar smoothing
parameter was also adopted by Huh and Yang (1991) to remove the same numerical difficulty in their limit
analysis formulation.

The value of 9, at this iterative step can then be determined by solving the following mathematical pro-
gramming problem

_ (0"Ki0)-(4+0"P'Q) 1 sT
mﬁm > P,|J|1{z V(6T Ki5,)-(4+0TP " Q) 20 G

i€(Ip)is

39
st. Fl'o=1 (39)

(0'K:id)- (4+Q'P Q) =0 (i € (In).y)

which is equivalent to the following minimum optimization problem:
'K;5) - (4+0Q'P! 1
o) = Y ol |y 2R BEOR D) Ly

el V6iK3,) - (4+ QP Q)

+o Y plI[((6TKS) - (4+ QTP Q))] +q(1 - F'9) (40)
i€(IR) gy

where « is a penalty factor and its value may vary from 10° to 10'2.
Finally, the minimum optimization problem (40) can be transformed into the following system of linear
algebraic equations by applying & = 0 and g—g =0

(K:9)-(4+0"P~' Q) _1G
%:M pik] |[\/ 5 Koo 4+Q P T 2

+2a Y plJI[(Kid) - (4+ QPT'Q)] = gF (41)

(IR k+1

F's =1
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By solving the above system of linear equations defined in Eq. (41), we can obtain the nodal displace-
ment velocity vector d;+; at this step. The limit load multiplier at this step can then be calculated as

, 1 N 1
A+l = Z pi|J|i [5 \/(5;_1[(1»6“1) : (4 + QTP IQ) - 552+1Gi (42)
i€l
The above iterative process is repeated until the following convergence criteria are satisfied
Jkr1 — A
| k-;lk 1 l <
U+
43
60— 80l _ )
[

where #; and 7, are computational error tolerances.

The above procedure leads to the limit load multiplier 4 through a convergent sequence with monoton-
ically decreasing series 4, and a minimum optimum upper bound to the limit load multiplier may be
obtained.

The solution algorithm proposed in this paper for frictional materials has been based on the technique
originally developed by Zhang et al. (1991) for von Mises’ criterion for which convergence has been proved.
It is stressed that similar procedures have also been successfully used by many other researchers (Huh and
Yang, 1991; Liu et al., 1995; Zhang and Lu, 1995; Maier et al., 2000). Although all the numerical results
presented in this study show clearly that the procedure is very stable and convergent, further theoretical
study of the effect of a general nonlinear yield criterion on the performance of the proposed iterative pro-
cedure may be useful.

5. Applications

The proposed numerical method described in this paper is now applied to evaluate the stability problems
of some typical soil structures. The efficiency of the developed nonlinear kinematic algorithm for the fric-
tional yield criterion in the form (1) has also been proved. In this section, for the plane strain model, the
Mohr-—Coulomb criterion is used to describe the yield of a frictional material while for the plane stress mod-
el, the Drucker—Prager yield surface is adopted. In the plane stress model, the strength parameters ¢q and ¢,
in the Drucker—Prager criterion is determined by:

1
=——sin 44
¢ = 2 cosQ-c (45)
0 /3 @

5.1. A half-space under normal pressure

The first numerical example to be illustrated is the stability problem of an isotropic and homogeneous
half-space under a uniform normal pressure, as shown in Fig. 1. A weightless cohesive-frictional soil mate-
rial is considered and the Mohr—Coulomb criterion is used to model its plastic behavior. The plane strain
condition is assumed. The exact collapse pressure for this problem is given by Prandtl (1920) as:

{ps =c-cote- [tan?(24+2) -e™? — 1] (¢ >0°) (46)
ps=514c (9 =0°)
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p

I EEEER

c¢

Fig. 1. A half-space under uniform normal pressure.

where p, denotes the plastic limit load of the half-space under a uniform normal pressure, ¢ and ¢ are the
effective cohesion and the effective friction angle of the soil material respectively.

To simulate a half-space, a finite region is determined to be numerically calculated by means of
the proposed method. The size of the selected finite region must be sufficiently large so that a half-
space requirement is approximately satisfied. This is mainly dependent on the area of the contact load-
ing. Due to the symmetry of the geometry and loading, only half of the body is analyzed. In this
plane strain example, the size of the simulated region required is determined as: Ly/By= 16 and Hy/
By =4, where B, denotes the length of loading area, Ly, and H, denote the length and height of
the simulated region respectively. The selected body is discretized with 2400 eight-node quadrilateral
finite elements as shown in Fig. 2 and the convergence tolerances are 1, =, = 10">. The numeri-
cal results are shown in Fig. 3 and they are in good agreement with the Prandtl’s exact solution
(1920).

The relationship between the iterative convergence sequences (41 = pg/c) and the iterative step k with
various internal friction angles ¢ is shown in Fig. 4. The results show that the efficiency and numerical
stability of the proposed algorithm are fairly high and that the amount of computational effort is very
small. It can be concluded from the numerical results that the internal friction angle of the soil mate-
rial has a significant effect on the bearing-capacity and stability of the half-space under normal
pressure.

To further show the failure mechanism of the half-space, some typical failure modes are plotted in Figs.
5-8. It can be seen that for the half-space under normal pressure, the body will collapse when the plastic

Ho

Lo/2

Fig. 2. The finite element mesh of the half-space.
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Fig. 3. The limit loads of the half-space under uniform pressure.
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Fig. 4. The convergence sequence Ai(ps/c) with iterative steps.

Fig. 5. The plastic velocity of the half-space (¢ = 0°).

zone is large enough for plastic sliding to occur. When the plastic zone starts to penetrate through the whole
structure, the non-restricted plastic flow will occur and the structure will fail.
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Fig. 6. The plastic dissipation factor of the half-space (¢ = 0°).

Fig. 7. The plastic velocity of the half-space (¢ = 15°).

Fig. 8. The plastic dissipation factor of the half-space (¢ = 15°).

5.2. Thick-walled cylinder under internal pressure

Components in engineering structures such as pipes can be simplified as a thick-walled cylinder problem.
Now consider a long thick-walled cylinder with inner radius R; and outer radius R, subject to a uniform
internal pressure p. Under the conditions of plane strain and the Mohr—Coulomb criterion, the exact solu-
tion to the plastic limit load of this case has been obtained by Yu (1992) and can be given by the following
equation:

_ (a—1)/
pot ((%) - 1) i @)
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Fig. 9. The finite element mesh of the cylinder.

where pg denotes the collapse pressure, py is the initial hydrostatic pressure acting throughout the structure,
Y and o are material constants determined by

2ccos ¢
= 4
1 —sing (48)
o = tan’(45° + ¢/2) (49)

where ¢ and ¢ are the cohesion and internal friction angle of a cohesive-frictional material respectively.

Because of symmetry, only a quarter of the structure is discretized for the FE analysis and one of the
meshes used for the numerical calculation is shown in Fig. 9. The numerical results of the bearing capacities
of the cylinder are calculated, as shown in Fig. 10, where the initial hydrostatic pressure is not considered,
i.e. po =0, and the Mohr—Coulomb criterion is used. There is a good agreement between the numerical re-
sults by the proposed method and the analytical solutions from Eq. (47).

The numerical results for three different meshes are provided in Table 1 to further demonstrate the effi-
ciency of the proposed nonlinear algorithm for the kinematic limit analysis based on the Mohr—Coulomb
criterion. The simulation is performed for the case with R,/R; = 1.5, ¢ =30° and 5, =1, = 1073 on a PC
machine with a Pentium IV 3.2GH CPU and 2.0GB RAM under Windows XP. The complier used is Com-
paq Visual Fortran Professional Edition 6.5.0. It can be seen that for a predetermined problem, the number
of iterations is independent of the mesh density. This can be also concluded from the last example. Using
the proposed algorithm, the convergence solutions can be obtained only after a few iterations and only a
little CPU time is spent. The results also show that the nonlinear technique has the advantages of high com-
putational precision and good numerical stability.

5.3. Stability of a bridge under a force

The stability of a bridge under a concentrated force is another important engineering problem. In this
section, a simple structural design for the bridge is provided, as shown in Fig. 11. The plane stress model
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Fig. 10. The plastic limit loads of the cylinder under internal pressure.

Table 1

Effect of different meshes on the performance of kinematic limit analysis

Mesh Number of iterations CPU time (s) Limit load py/c Percentage error (%)
Coarse, 180 elements, 597 nodes 24 28 0.5373 0.06

Medium, 360 elements, 1165 nodes 24 56 0.5375 0.02

Fine, 600 elements, 1901 nodes 24 92 0.5376 0.0

40.0m

Fig. 11. The finite element mesh of the bridge.

is assumed and the Drucker—Prager criterion is adopted. The bridge is discretized with 190 eight-node
quadrilateral finite elements and the convergence tolerances are determined as 5; = 1, = 10~>. The bearing
capacities of the bridge with ¢ = 5° are calculated and shown in Fig. 12, where L, denotes the distance from
the point of loading to the central point of the bridge. It can be seen that the most dangerous loading point
is located at the center of the bridge. More detailed failure modes of the bridge are shown in Figs. 13-16.
From these results, it can be concluded that the collapse of the structure is due to the development of plastic
zones penetrating through the structure. For a bridge under a concentrated force, the bearing capacity is
dependent on its thickness and also influenced by its supports. Even if the loading is applied at the center
of the bridge, far away from the supports, there are still some plastic zones near the supports at the collapse
of the structure.
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Fig. 12. The limit loads of the bridge under a force.
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Fig. 13. The plastic velocity of the bridge (Lo = 0.0 m).

-
A

Fig. 14. The plastic dissipation factor of the bridge (Lo = 0.0 m).

Fig. 15. The plastic velocity of the bridge (Lo =9.28 m).

Fig. 16. The plastic dissipation factor of the bridge (Lo = 9.28 m).
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6. Conclusions

A novel iterative procedure has been developed to conduct kinematic limit analysis for frictional mate-
rials and its numerical implementation is performed by means of a nonlinear programming technique in
conjunction with the displacement-based finite element method. The method proposed in the paper is an
extension of the nonlinear programming technique that has so far only been applied to non-frictional mate-
rials such as those governed by von Mises’ or Hill’s yield criteria (Zhang et al., 1991; Zhang and Lu, 1995;
Liu et al., 1995). By using an associated flow rule, a general pressure-sensitive yield criterion can be directly
introduced into the kinematic theorem of limit analysis. A nonlinear function of the kinematically admis-
sible velocity field is then obtained to represent the plastic dissipation power. The yield surface does not
need to be linearized which can reduce the number of constraints and therefore computational costs. Based
on the mathematical programming theory, a finite element formulation of the kinematic limit analysis pro-
cedure is proposed as a nonlinear programming problem subject to a single equality constraint. The pro-
posed method only makes use of the kinematically admissible velocity field and no stress fields need to be
calculated for performing limit analysis. The numerical examples show that the proposed iterative algo-
rithm has the advantages of high computational accuracy and good numerical stability. By means of the
proposed method, possible failure mechanisms of a structure can also be obtained.
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